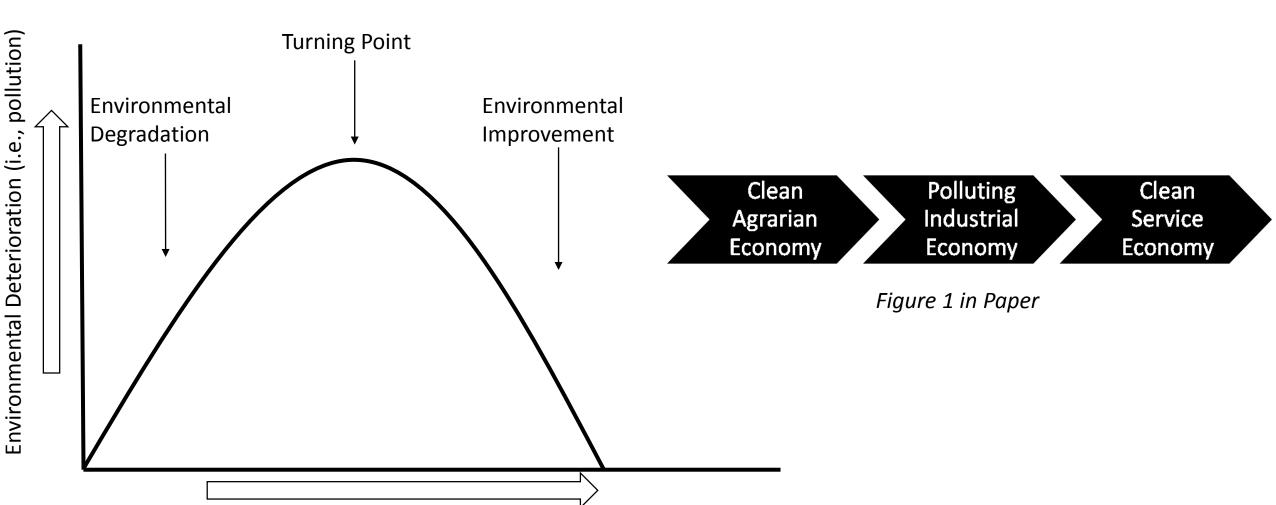


The Relationship between Economic Growth and Environmental Degradation: Exploring Models and Questioning the Existence of an Environmental Kuznets Curve

Author

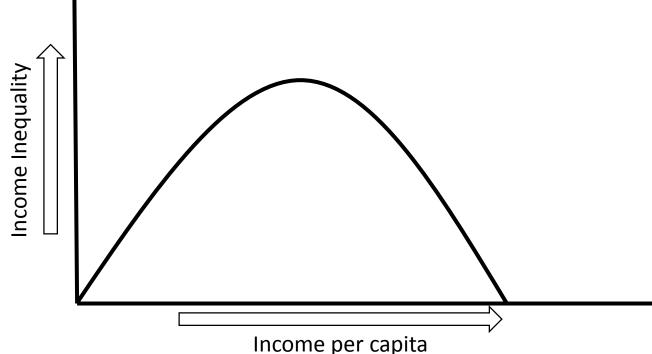
Jonathan Skaza
Student, Bryant University
jskaza@bryant.edu


Advisor

Brian Blais, PhD
Professor of Science and Technology, Bryant University
Research Professor, Institute for Brain and Neural Systems, Brown University
bblais@bryant.edu

Introduction & Motivation

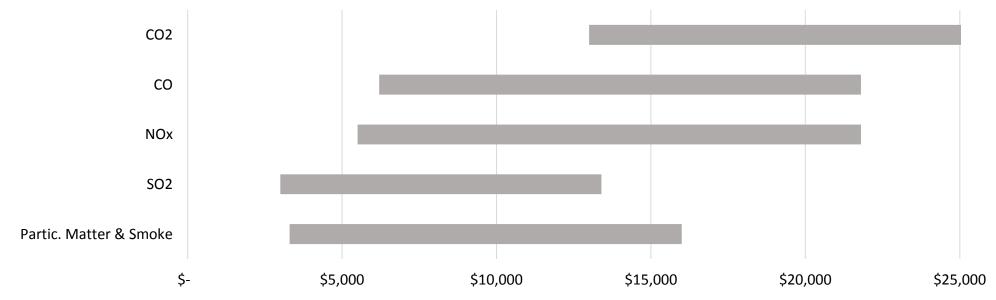
- Does economic growth damage the environment or does the environment improve when a country becomes more economically prosperous?
- No clear-cut answer in the literature
- Environmentalist P.O.V vs. Economist P.O.V.
- Policy implications
- Our study: No clear EKC throughout overall environment


Environmental Kuznets Curve

Real GDP per capita

Literature

- Kuznets curve first developed by Kuznets (1955)
- Grossman and Krueger (1991): First empirical study on EKC
- Panayotou (1993): Coined term "environmental Kuznets curve"



Presented By Jonathan Skaza | March 8, 2014 http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2346173

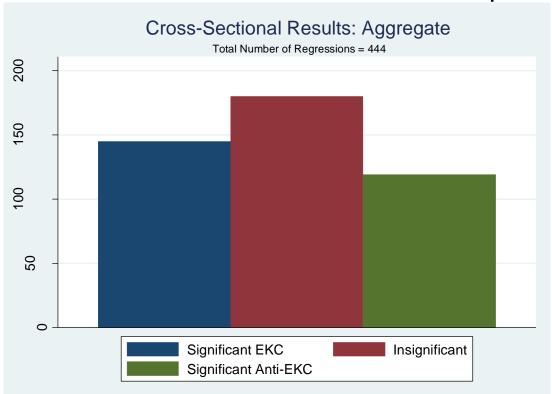
Literature

- No consensual turning point
- "[T]here is no agreement in the literature on the income level at which environmental degradation starts declining" (Dinda, 2004)

Range of Turning Point Estimates
*Based on data in Moomaw and Unruh (1997)

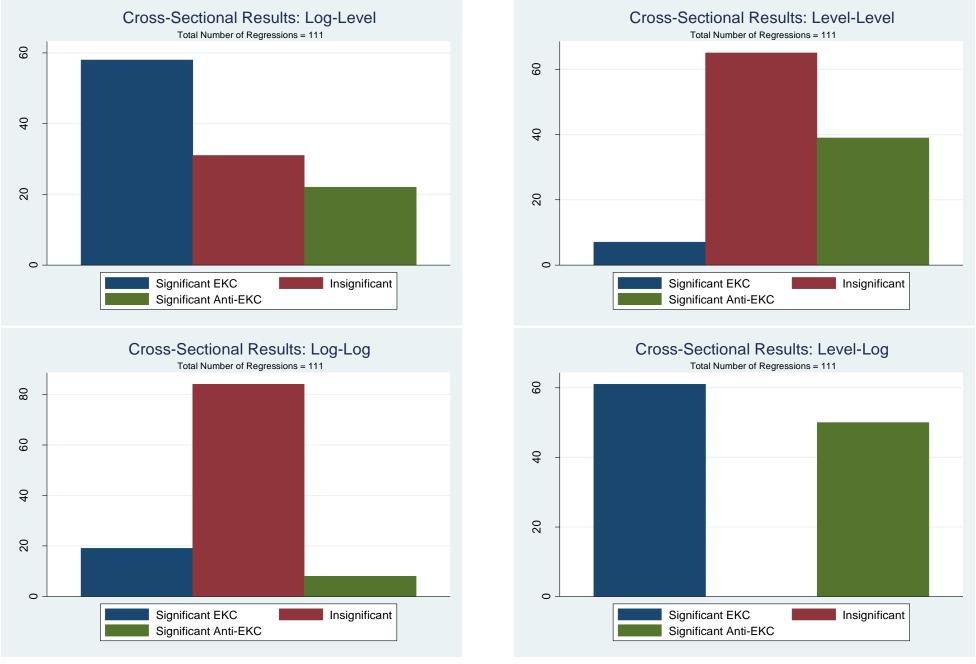
Presented By Jonathan Skaza | March 8, 2014 http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2346173

Literature


- Lieb (2003): Most studies agree that an EKC exists for
 - SO₂
 - SPM
 - NO_x
 - CO
 - VOC
- Egli and Steger (2007) present evidence for an N-, or possibly M-, shaped curve

Three-Tiered Empirical Approach

- Cross-Sectional
 - $P = \beta_0 + \beta_1 Y + \beta_2 Y^2 + \mu$
 - $P = \beta_0 + \beta_1 \log(Y) + \beta_2 \log(Y)^2 + \mu$
 - $log(P) = \beta_0 + \beta_1 Y + \beta_2 Y^2 + \mu$
 - $log(P) = \beta_0 + \beta_1 log(Y) + \beta_2 log(Y)^2 + \mu$
- Panel
 - $P_{it} = \alpha + \beta_1 Y_{it} + \beta_2 Y_{it}^2 + \varepsilon_{it}$
 - $P_{it} = \alpha + \beta_1 \log(Y_{it}) + \beta_2 \log(Y_{it})^2 + \varepsilon_{it}$
- Time-Series
 - Graphical Analysis


Cross-Sectional Analysis

• 111 PIR combinations x 4 specifications = 444 Regressions

Statistically Significant EKC Effect	32.66%
Statistically Significant Anti-EKC Effect	26.80%
Insignificant Effect	40.54%

Figure 4 in Paper

Panel Analysis: Meta-Analysis

Transformation	EKC Significant	EKC Insignificant	Anti-EKC Significant	Anti-EKC Insignificant
None	4	3	1	0
Log(real GDP per capita)	3	1	1	3
$\alpha = 0.10$				

Figure 9 in Paper

Panel Analysis: Statistically Significant Indicators

Environmental Indicator (units)	Transformation	Coefficient on Quadratic Term (90% CI)	Turning Point Estimate*		
Biodiversity (Indexed 0-100)	None	8.12e-10 (3.91e-11, 1.59e-09)	\$88,547		
BOD (kg per day per worker)	None	-1.15e-11 (-1.78e-11, -5.22e-12)	\$809		
	Log(X)	0046749 (0066406,0027091)	\$3,393		
CO ₂ (metric tons per capita)	None	-1.88e-09 (-2.14e-09, -1.63e-09)	\$59,309		
Other GHG (thousand metric tons of CO ₂ equivalent)	None	-3.57e-06 (-5.93e-06, -1.20e-06)	\$86,264		
NO	Log(X)	-3970.539 (-5185.666, -2755.411)	\$19,186		
Methane	Log(X)	-7431.878 (-10625.33, -4238.425)	\$40,424		
*Note: Real GDP ner canita is expressed in 2005 USD					

^{*}Note: Real GDP per capita is expressed in 2005 USD

Conclusions & Further Research Warranted

- The existence of an EKC relationship throughout the environment should not be taken as given
- EKC effect clearest in organic water pollution, while CO_2 , NO, and methane also seem to follow an EKC
- Anti-EKC effect for PM₁₀
- PIR does not clearly follow an EKC path, but we have not addressed what the actual path may be
- In need of more time-series studies
- Exploration of different independent variables