Technical Typesetting

An Overview of $\mathbb{E}_{\mathbb{E}}^{X}$

Jonathan Skaza October 14, 2016

University of Michigan Department of Biostatistics

🖂 jskaza@umich.edu

🕈 jskaza.github.io

- 1. Introduction
- 2. The LATEX System
- 3. LETEX in Reproducible Research
- 4. Let EX in the Cloud

Introduction

Two main approaches to typesetting (and one blended approach):

- "What you see is what you get" (WYSIWYG)
 - Word, Pages
- Markup
 - \cdot ${\rm ET}_{\rm E}$ X, Markdown, HTML
- "What you see is what you mean" (WYSIWYM)
 - LyX

"ﷺ... is a document preparation system for high-quality typesetting. It is most often used for medium-to-large technical or scientific documents but it can be used for almost any form of publishing."

— The ETEX Project

・ 町EX is pronounced «Lah-tech» or «Lay-tech»

- $\cdot\,$ Separation of presentation and content philosophy
- Focus on writing without worrying about formatting
 - Typesetting system will take care of the formatting
- Excellent mathematical typesetting
- No copying & pasting or saving figures
 - Improves reproducibility

Effort vs. Complexity

Figure 1: Image from http://www.pinteric.com/miktex.html

A Simple Word Document

Section 1

This is a sample *list*: Item 1 Item 2 Item 3

Figure 2: A document created in Word

```
\documentclass{article}
\begin{document}
\section *{Section 1}
This is a sample \textit{list}:
\begin{itemize}
\item Item 1
\item Item 2
\item Item 3
\end{itemize}
% this is a sample comment
\end{document}
```

Section 1

This is a sample *list*:

- $\bullet~$ Item 1
- $\bullet~$ Item 2
- Item 3

Figure 3: ETEX syntax and output

The Lager System

Timeline

Table 1: A T_EX Timeline [1]

👌 Linux

Check your Linux distributions software source for a TeX distribution including LaTeX. You can also install TeX Live directly.

🕯 Mac OS

The MacTeX distribution contains everything you need, including a complete TeX system with LaTeX itself and editors to write documents.

Windows

Check out the MiKTeX or proTeXt or TeX Live distributions; they contain a complete TeX system with LaTeX itself and editors to write documents.

Online

LaTeX online services like Papeeria, Overleaf, and ShareLaTeX offer the ability to edit, view and download LaTeX files and resulting PDFs.

Figure 4: Installation guide from
https://www.latex-project.org/get/

Choose Your LETEX Editor

- $\cdot\,\, T_{E\!}X$ can be written in any standard text editor
 - Run tex, pdftex, latex, or pdflatex on the .tex file
- \cdot However, there are many specially-designed $T_{\!E\!}X$ editors
 - Point-and-click compilation
- My personal favorite is TeXstudio
- For an exhaustive list of editors, check out this Wikipedia page

Figure 5: The TeXstudio logo

Figure 6: Source: https:

//www.sharelatex.com/learn/Choosing_a_LaTeX_Compiler

- **DVI**: Device independent file format; not intended to be human-readable; consist of binary data describing the visual layout of a document; typically intended as input to a second program
- **PS**: PostScript file format; describes text and graphics on page based on vector graphics
- **PDF**: Portable Document Format; based on PostScript; documents independent of application software, hardware, and operating systems
- However, most good editors include icons that can keep you away from the terminal/command prompt if you so choose

Document Classes

- \cdot The first step in creating any $\mbox{\sc ME} X$ document is to declare a document class, or simply the type of document you wish to generate
- Some useful document classes are included in the table below

Document Class	Description
article	flexible; technical reports, journal articles, documentation, etc.
proc	conference proceedings
report	longer reports and theses
book	books
letter	formal letters
beamer	slides

Table 2: Adapted from: https://en.wikibooks.org/wiki/LaTeX/ Document_Structure#Document_classes

- \cdot The $\ensuremath{\text{Tr}E\!X}$ system is built on commands
- Commands serve as "blueprints" to the compiler providing instructions about formatting, special characters, etc.
- \cdot Commands begin with \setminus
- Mathematical commands must be written in math mode

Command	Result
<pre>\textbf{Bold Text}</pre>	Bold Text
{\it Italic Text}	Italic Text
\section{Bayes' Theorem}	Creates section "Bayes' Theorem"
\ð	&
\textbackslash	1

- \cdot $\ensuremath{\mbox{\sc tr}}\xspace EX$ is shipped with numerous commands
- However, sometimes it is useful to define your own command

\newcommand{\ec}{\textsc{Evil Corp}}
If writing an article on \textit{Mr. Robot}, it may
be worthwhile to make an \ec{} command.

If writing an article on *Mr. Robot*, it may be worthwhile to make an EVIL CORP command.

```
\newcommand{\betadist}[3]{\frac{\Gamma(#2 + #3)}
{\Gamma(#2)\Gamma(#3)}#1^{#2-1}(1-#1)^{#3-1}}
```

```
\int x^{x}_{\lambda}
```

\$\betadist{t}{\gamma}{\mu}\$

$$\frac{\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha-1} (1-x)^{\beta-1}}{\frac{\Gamma(\gamma+\mu)}{\Gamma(\gamma)\Gamma(\mu)} t^{\gamma-1} (1-t)^{\mu-1}}$$

- Environments are similar to commands in that they provide formatting instructions
- However, they are typically applied to larger blocks of text

```
\begin{center}
This text is \textit{centered}.
\end{center}
```

This text is centered.

Example Environments

```
\begin{tabular}{c c}
\toprule
Fruit & Count \\
\midrule
Apple & 2 \\
Banana & 7 \\
Orange & 4
\end{tabular}
```

	Fruit	Count
ļ	Apple	2
В	anana	7
0	range	4

• T_EX shorthand for inline math: \$...\$

A function f is said to be continuous at c if it is both defined at c and $\lambda = x \to c$.

A function f is said to be continuous at c if it is both defined at c and $\lim_{x\to c} f(x) = f(c)$.

• ETEX shorthand for displayed math: \[...\]

\[f(x \mid \mu, \sigma^2) = \frac{1}{\sqrt{2 \sigma^2 \pi}} \exp \Big\{-\frac{(x-\mu)^2}{2 \sigma^2}\Big\}\]

$$f(x \mid \mu, \sigma^2) = \frac{1}{\sqrt{2\sigma^2 \pi}} \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\}$$

\usepackage{amsmath}
\begin{align*}
f(x) &= (x-5)(x+3) \\
&= x^2-2x-15
\end{align*}

$$f(x) = (x - 5)(x + 3)$$
$$= x^{2} - 2x - 15$$

- It is sometimes useful/necessary to create custom environments
- Syntactically similar to new commands

New Environments

```
\newenvironment{examplebox}
{\begin{tabular}{| l |}
\hline \\
\textbf{Example}}
{\\\\hline
\end{tabular}}
\begin{examplebox}
If $X \sim Poi(\lambda_1)$ and $Y \sim Poi(\lambda_2)$,
then $X+Y \sim Poi(\lambda_1 + \lambda_2)$.
\end{examplebox}
```

Example If $X \sim Poi(\lambda_1) \otimes Y \sim Poi(\lambda_2)$, $X + Y \sim Poi(\lambda_1 + \lambda_2)$.

- BibTeX
 - \cdot Bundled with $\text{ET}_{E}\!X$
- BibLaTeX
 - Recently succeeded BibTeX
- Natbib
 - $\cdot\,$ The natbib package allows for different citation formats

- \cdot Store references in an external file with the **.bib** extension
- Each entry should begin with a declaration of the reference type (i.e., atype), followed by a citation key and a host data specific to the reference
- Depending on the reference type, certain attributes are required while others are optional
- BibTex does not have a nice way to cite web pages it is often recommended to use the @misc reference type
 - BibLaTeX has an **@online** entry type

```
@article{benjamini1995controlling,
    title={Controlling the false discovery rate: a practical and
    powerful approach to multiple testing},
    author={Benjamini, Yoav and Hochberg, Yosef},
    journal={Journal of the royal statistical society. Series B (Methodological)},
    pages={289--300},
    year={1995},
    publisher={Blackwell Publishers}
}
```

Google Scholar

- Google Scholar makes creating the .bib file easy
- + Find article \rightarrow Click cite \rightarrow Click BibTeX

		×		
Cite				
Copy and paste a formatted citation or use one of the links to import into a bibliography manager.				
MLA	Benjamini, Yoav, and Yosef Hochberg. "Controlling the false discovery rate: a practical and powerful approach to multiple testing." <i>Journal of the royal</i> <i>statistical society. Series B (Methodological)</i> (1995): 289-300.			
APA	Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. <i>Journal of the royal</i> statistical society. Series B (Methodological), 289-300.			
Chicago	Benjamini, Yoav, and Yosef Hochberg, "Controlling the false discovery rate: a practical and powerful approach to multiple testing." <i>Journal of the royal</i> <i>statistical society. Series B (Methodological)</i> (1995): 289-300.			
Harvard	Benjamini, Y. and Hochberg, Y., 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. <i>Journal of the royal</i> <i>statistical society. Series B (Methodological)</i> , pp.289-300.			
Vancouver	Benjamini Y, Hochbarg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the royal statistical society. Series B (Methodological). 1995 Jan 1:289-300.			
	BibTeX EndNote RefMan RefWorks			

Figure 7: Google Scholar screenshot

- Before the \end{document} command, include \bibliographystyle{style} and \bibliography{bibfile}
- To cite in-text, insert \cite{citation_key} or \cite{citation_key_01, citation_key_02,...}

- Multiple passes are required to link references in the .bib file to the .tex document
 - 1. pdflatex latex_source_code.tex
 - 2. bibtex latex_source_code.aux
 - 3. pdflatex latex_source_code.tex
 - 4. pdflatex latex_source_code.tex

断_EX in Reproducible Research

R Markdown & Jupyter Notebook

- R Markdown
 - $\cdot\,$ R Markdown is a format for writing reproducible reports with R
 - $\cdot\,$ Ability to embed R code and output into various document types
 - Check out this cheatsheet: https://www.rstudio.com/wp-content/uploads/2015/ 02/rmarkdown-cheatsheet.pdf
- Jupyter Notebook
 - Web application that allows users to create and share live code, results, and commentary
 - $\cdot\,$ Supports over 40 programming languages including Python and R
- Both support the use of Markdown, in which it is possible to embed $\ensuremath{\texttt{ETE}}\xspace{X}$
- \cdot Less clean alternative $\rightarrow \texttt{listings}$ package

- Universal document converter
- Convert one markup format into another
- "Swiss-army knife"
- The conversion "tree" is too large to fit on this slide! (http://pandoc.org/)
- See http://pandoc.org/installing.html for installation details

$\ensuremath{\texttt{ET}}_{\ensuremath{\text{E}}}\xspace{\texttt{X}}\xspace{\texttt{X}}$ in the Cloud

- \cdot Online $\ensuremath{\text{ET}}_{\ensuremath{\text{EX}}} X$ editors are available
- Great for collaboration
- No need to worry about compiling issues
- + Great for beginners \rightarrow do not need a $T_{E\!}X$ distribution
- My personal favorites are Overleaf and ShareLaTeX

J. Allen.

The TeX family tree: LaTeX, pdfTeX, XeTeX, LuaTeX and ConTeXt, 2012.