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We consider three model classes
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Each filter corresponds to a known cell type (e.g., L1, T4a), in the optic lobe. 
Connectivity and spatial receptive field sizes are drawn from connectome data.
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•Visual projection neurons in fruit flies 
form a bottleneck, transferring most 
visual information to the central brain.

•This study aims to evaluate how well 
deep neural networks (DNNs), trained 
on actual neural responses, can predict 
these responses.

•DNNs can make predictions, but more 
diverse stimuli are needed to 
e�ectively di�erentiate between 
models.
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Many DNN architectures predict responses e�ectively

Identifying stimulus preference through interpretable 
spatiotemporal filters

best model
per class

∆F—F
connectome-inspired

time

blackbox

real data

strf

overall 
held-out
R2

1m params

100k params
500k params

0.1

0.2

0.3

0.4

0.5

0.0

one model

connectome-
inspired

blackbox strf

LC25
LC21
LC4

LC18
LC11

LPLC1
LC17
LC12
LC15
LC6

LPLC2
LC26

LC10a
LC16
LC24

LC9
LC13

LC22

LC20

0.1 0.2 0.3 0.4 0.50.0 0.6 0.7
held-out R2

connectome-
inspired

blackbox
strf

∆F   — =F∑

LC11: responds to small objects

LPLC1: strong response to loom

predict response
at time t

t - 333ms

inhibitory

excitatory

LC12: not tuned to object size
• Current DNNs are able to predict LC activity (held-out R² > 0.5), demonstrating their 

utility in modeling neural responses and providing insights into the underlying mecha-
nisms of visual processing.

• There is a plethora of novel stimuli we can use to aid our modeling e�orts and refine our 
understanding of the role LC neurons play in visual processing.

Future work
• Transfer learning from task-driven models of Drosophila visual system
• Knowledge distillation to better train connectome-inspired models
• Search for circuit motifs in connectome-inspired models

Takeaways
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Generating controversial stimuli to di�erentiate 
models and LC preferences

xcontroversial = argmaxx||ri(x) - rj(x)||2...
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