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Motivation & Introduction

Method: Foveated Scene Understanding Map (F-SUM)
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» Language entropy captures the diversity of sampled descriptions but may miss the underlying effort required to generate them. In the bottom-left example in Fig.7, captions

Flgu re 3: Overview of our Foveated Scene Understa nding I\/|ap consistently mention a person reaching into a tree while others look on. Although the descriptions seem coherent and varied, they require multiple eye movements to integrate
dispersed visual information.

Psychophysics » Foveated Scene Descriptions: We sample 108—136 fixation points. For each point, a foveation model is applied to simulates the fall-off in
human visual acuity with eccentricity [4]. A VLM then generates a description for each foveated image.

Global informativeness

» The F-SUM is defined as a 2D matrix M, where each entry M,, , corresponds to a grid location (m, n) and is computed as:

» (1) Response Time Study:

Participants (N = 17) will do the free viewing
Keep fixating until until they understand the scene, and then type in
cross disappears the scene descriptions. Response time and
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gi denotes the embedding of the i-th gold standard description, and f;, , ; denotes the embedding of the j-th foveated description at (m, n).

» Evaluation Metrics: The design of Weighted Ripley’s K (inspired by [5]) Function is driven by the two criteria:
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Viewing with 2 or 4 Saccades

Participants (N = 16) were then instructed to
Figure 2: Overview of human psychophysics  provide descriptions of the scene based on what
they observed.
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P is the set of coordinates of elements in the matrix, p and g are two pixels in P, with coordinates (iy, j,) and (ig, jq). dpq is the Euclidean distance
between p and q. w, and w, are the values of pixels p and q. w; is the weight for distance r. R is the maximum distance (R = 10 in our
experiments). S will be further normalized to range from 0 to 1 and let a higher value means the scene is more difficult to understand.
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