Introduction

* Over the last decade, image computable models
such as saliency (GBVS!") or Deepgazel?! have been
developed to predict locations people might
fixate when viewing naturalistic scenes.

A recent technique (Scene Understanding Map
(SUM)) developed by Murlidaran et al.®! showed
that people fixate on objects critical to
understanding the scene. They digitally removed
objects from a scene and quantified the impact of
the removal by comparing the similarity of
descriptions from humans with and without the
object’s presence.

Here, we build upon their method by automating
various components of their procedure. To this
end, we use the Winograd images developed by
Murlidaran et al. to compare the effect of
automating various components on the agreement
of the most critical object with the original
method. We also compare the ability of all the
methods to predict the most fixated object on a
scene description task.
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Winograd Pair Example

Image pairs that look visually very similar but
are described differently

Description: A man is sitting Descripton: A man is sitting on a
on a couch watching something couch while folding laundry.
from a projector.

SUM map generation has three stages

Original Image Original Description

A man is sitting on a couch watching

something from a projector. N .
Similarity Rating Scale

1 - Low similarity
0 - High similarity

O_ -1

Removed Descriptions after Impact of removed
Object object removed object on description

Projector

. [An individual is reminiscing
sitting on a couch.

Clothes

A person sitting on the
couch watching something
on the projector

Pillow

A man is sitting on the

- couch watching old movies

with a projector.

Composite Scene Understanding Map

)\ )
Y Y )\

Object Removal Providing Rating Similarity
Descriptions

Automating the SUM generation process at different
stages
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Results

Agreement with the original method to generate the SUM map
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Predicting Maximum Fixated Object in Scene Description Task

Scene Description Task
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All Images in Winograd Dataset Humans and MLLM understand the scene similarly
(38 images) (32 images)
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Auto Erasure Procedure

Prompt GPT40 to Grounded DINO®! (detection) PowerPaint!’l (Image Inpainting
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Deleting very large objects can induce artifacts that can impact the model’s understanding of the scene, though
it may not be a critical object

Couch Removed

The person appers to be taking a break A person is examnig a small diorama on
after exercising with dumbbells in a living the floor in aroom that also contains a
room setting. keyboard and guitar.

The model’s understanding of the scene may not be similar to how humans understand the scene

Human Description: A man is bending to look for a tennis ball under sofa.

MLLM Description: A person is bending over, possibly looking at or interacting
with something on a table in a living room.

4. Conclusion

* Scene Understanding Maps perform well at predicting the most fixated object during a scene
description task.

MLLMs can be used to automate the generation of Scene Understanding Maps. Although they have
certain limitations, their performance is still at par with the original SUM maps
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